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The Use of a Beam Space Representation and
Nonlinear Programming in Phase-Only Nulling

1. INTROD)UCTION

The considerable~ recent interest in the use of phase-only control of the ele-

ment weights of array antennas for adaptive nulling 19reflects the growth in
importance of both phased arrays and adaptive processing. Phase-only null

synthesis in array antenna patterns is also of current interest 1 0 -18 bec-ause it

can help establish limnits to what can be achieved adaptively, and possibly suggest

adaptive procedures.

Phase-only null synthesis presents analytic and computational difficulties not
present when both amplitude and phase of the element weights can be freely per-

turbed. The restriction of the weight perturbations to be of the phases only,
makes the nulling problem nonlinear and not solvable analytically. Approximations

and/or numerical techniques must be used to calculate the phases required to
impose nulls in the pattern. As with nulling with combined phase and amplitude

control, the number of imposed nulls Is typically considerably less than the avail-
able number of degrees of freedom (one halt the number of elements for phase-only
nulling In real antenna patterns) and so additional conditions must be imposed to
define a unique solution. Since in either null synthesis or adaptive nulling it is

(Received for publication 2 May 1983)
N Because of the large number of references cited above, they will not be listed here.

See References, page 29.
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"generally desired to prese.rve the original pattern intact as much as possible

apart from the immediate vicinity of the imposed null locations, a natural condi-

tion to be added to the requirement of nulls at specified locatior is that the per-

turbation of the pattern be minimized in a mean square sense. For a linear array

with half-wavelength intereleLnent spacing this is equivalent to requiring that the

sum of the squared absolute values of the weight yerturbations be a minimum. A
more general condition requiring minimization of a weighted sum of the squared

absolute weight perturbations can provide additional flexibility in nulling that may

be desirable in certain situations.

In a series of recent reports we have investigated various approaches to cal-

culating the phases for minimized weight perturbation, phase-only null synthesis.

A straightforward linear approximation method, reasonably effective for small
phase perturbations, is discussed in Reference 13; a method based on iterated

linearization of the phase-only nulling equations is described in Reference 14; a

method consisting of obtaining the best phase-only approximation to the combined

phase and amplitude perturbation solution of the nulling problem is reported in

Reference 17; and the use of nonlinear programming techniques to calculate the

phase perturbations is the subject of Reference 18. Of these methods the nonlinear
progra .rning approach is the most general and effective. In this report we de-

scribe a variation of the nonlinear programming method based on the work of

Baird and Rassweiler.
In their basic paper on phase-only nulling. I Baird and Rassweiler considered

the problem of minimizing the mean square difference between a desired signal

and the output of a linear array by varying the phases only of the array elements.

The amplitudes of the element weights were assumed equal to unity. The sources
of the signal and the interrere-nres were modeled as discrete, single-frequency
directional emitters. The vector of optimal phases was shown to be expressible
as the phase of a linear combination of the complex conjugates of the vectors
giving the signal and interferences as received at the elements of the array. This

representation was referred to as the "beam space decomposition." and the

coefficients of the vectors as "beam space coefficients" or "beam coefficients."

The purpose of this report is to apply the analytic method of Baird and

Rassweiler to the problem of imposing nulls in the pattern of a linear array of
elements by varying the phases only of the eltment weights, subject to the condi-
tion that the perturbations of the weights be minimized in a weighted least-squares

sense, In Section 2 we obtain a representation of the desired phases similar to
that of Baird and Rassweiler, but slightly more general in that the solution allows

for an arbitrary amplitude taper of the lement weights, and for any choice of the
coefficients entering into the weighted sum of the squared weight perturbations.
When the phase perturbations are small the perturbed pattern can be interpreted

6
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as the original pattern plus a sum of cancellation beams directed towards the

imposed n-ll locations . id the locations symmetric with respect to the mainbeam.

"The major contribution of this report to the literature on phase-only nulling is

contained in Section 3, in which it is shown that a highly efficient method of cal-

culating the phase perturbations for minimized weight perturbation null synthesis

is to use nonlinear programming computer algorithms to calculate the coefficients

in the beam space representation of the phase perturbations. The use of the beam

space representation enables the number of unknowns to be reduced from half the

number of elements to the number of imposed null locations. Section 4 of the

report contains a brie.' discussion of the use of the beam space representation in

adaptive phase-oniy nulling.

2. ANALYSIS

We consider a linear array of N equispaced isotropic elements (Figure 1)

whose field pattern is given by

N jdu

P (u).Ž an e

n 1

In Eq. (1) the (anh'are the complex element weights,

dn 2 (n 1) -dN-n+l , n 1,2,... .N (2)

and

u d sin 0

where

A wavelength,

d interelement spacing, and

0 angle measurk-d from broadside to the array.

The phase reference is taken to be the <:enter of the array. Let n. n 1, 2.

N, be the set of perturbations that (a) i'nposes nulls in the pattern at the locations
Uu • k. k =1, 2 . .. K:

7

:'N.

"*1



N N-I N-2 3 2 I

Figure 1. Geometry of Array

N jin Jdnuk

San e e 0 k 1. 2. K. (3)

n=1

and (b) minimizes the weighted sum oa the squares oa the absolute values of the

element weight perturbations

N d2

F - iJa e (4)

n-i

The weighting coefficients (c n in Eq. (4) are assumed real and positive.

The method we employ to derive a beam space representation for the phase
perturbations is that of Baird a i Rassweiler. I We let

ion
w n = e n 1, 2,... N. (5)

and make the null constraints purely real by multiplying the left-hand side of
Eq. (3) by its complex conjugate. The null constraints then become

"N N _j "d dm "d n)uk

"m a* anW•Wn d = 0 k 1 2. K .(6)
m=l n=l

The choice cn I- for all n makes F the sum of the squares of the absolute
vahles of the weight perturbations. For half-wavelength spacing of the array ele-
ments, this is equivalent to minimizing the mean square pattern perturbation for
0 from -r/2 to r/2. Other choices of the cn with practical application to null
synthesis are also possible;13. 15 for example. c n 1/ia n12.
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while

N

F E2 cnlan12ln-wn
n=1

N

Ej Cnlan12(2 -
2 Re[Wnl) •7)

n=l

Since the {0nI arc assumed to be real phkse perturbations, the [Wn) by Eq. (5)

have unit modulus. This is expressed by an additional set of N constraints

w*w = I . n , 2... ,N (8)n n

We now form the Lagrangian

K N

L F +Z E kCk+ ;tnDn .

k=l n=l

where from Eqs. (6) and (8) respectively.

N N J(dnm'dn)Uk*

Ca an e w* w k =, 2. Kk r :E a n m n.t

m=l n=l

and

D n w*n 1 , n 1, 2. N. (9)

The (Uk) and (Atn are (real) Lagrangiar. multipliers. A necessary condition for

F to have a stationary point is that the gradient of the Lagrangian with respect to

[w [. w2 ..... wNIT be zero: 1 9

*The gradient with respect to a complex vector z is defined 2 0 to be

2 VRe[Jj + J~imilzJ
19. Fletcher, R. (1981) Practical Methods of Optimization; Vol. 2. Constrained

Optimization, John Wiley & Sons, New York, Ch. 9.
20. Morse. P.M. . and Feshback, H. (1953) Methods of Theoretical Physics,

Part 1, McGraw-Hill, N.Y., p. 351.

9



K K

vL V F + V,,E UkCk + V.EAn Dnz . (10)
w w WW
- -- k=1 n=1

Now from Eq. (7)

SF -2VwRe(wT a)

-2a (V 1)

where we have let a denot- the vector

a eC1la, 12 , -2 ' aI2NI1 j 12)

The null constr'aint functions. JCkJ, are Hermitian quadratic forms and can be

written as

Yk - -t

where

=f -jdl ~ -iedNk T k. .
"* ed k 1N 2. K (13)

Tht -'lements of the Hermitian matrix Rk are

[•kln = Ftk] * "(dm'dn)Uk

m am a4 e , m, n 1, 2, m.,N

Letting R be the Hermitian matrix

K

k=1

K

k=l

Ir.

- - *;



then gives

K

It kkV,
k-1

2Rw 
(14)

by using the formula21 for the complex grad'ent of a Hermitian quadratic form.

Finally.

N

E .nDn 2(l 1, , W. JN
n~l

S2Aw (15)

where

21 (16)

Substituting Eqs. (1!0, (14). and (15), in Eq. (10) we obtain

-2a +2R1w +2Aw 0

or

(R +A)w-o

and hence

w (R+A)- . 17)

Equations (6), (8). and (17) form a system of 2N + K equations for the 2N + K

unknovins (wn, (h n,1 and tlukl. Since thf, constraints. Eq. (8). specifying the use

of phase-only weight control are nonlinear, the system of equations can bt solved

21. Hudson, J. E. (1981) Ada ptive Array Principles. Institution of Electrical
Engineers, London, p. 245.
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only by the use of numerical techniques, such as nonlinear programming. How-
ever. Eq. (17) can be used to derive a convenient representation of the phase
perturbations. Following klaird and Rassweiler we define a sequence of matrices

_ by

mem"_A÷• k,• •mtl 2 ... K
k:1

B A-0

with the vectors vk defined by Eq. (13). Using the matrix inversion formula. 2 2

Il AlzztA"1

(A+zzt) -A"I
I + tzA' z

we see that the Bm satisfy the backwards recursion relation

P_ I B-rni m I- "ym _-in 1.I 1

•, •- (19)-o -M1 - 1 1

Since

from Eq. (17)

-~B-
1 v vt Bi*

I KK1 IKZB*.-;ý1 +,,,LKI.-l -K

22. Householder, A. S. (1964) The Theory of Mat rirces In Numerical Analysis,
Blalsdell, N.Y., p. 123.
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where K Is the scalar

Ft -

We now repeat the process. using Eq. (18) and letting

so that

!!K-1.-K-1

IB1 5K-1 !K'-2 XK-I :!K-I K-21

1!-2 !K1 +uK-1 YK-1 2!) -

-1 - K1K)

!!~K-2(2 - ýKŽK - K-1 YK-I)

where

OK..1 ZK.I.-K-.2 -!K-I

Continuing the procr and using Eq. (19) at the end, we obtnin

A1( (20Y

13



where

7k""kk k 1.2.. 2. K,

and

K

- k-k k =1, 2. K-i

m-k+l
ak , kK .

In component form, Eq. (20) is. referring to Eqs. (5), (16), (12). and (13P,

eJn=1 ( 2 _r n.dk\
e -- " cnlan E "k an e0 n - 1. 2 .... N

Expressing the unperturbed element weights (an) in the magnitude-and-phase

form an I ani exp (jon1,

eion I (c lan12 - I ejn K eJdnUk
Tal -n en n Ke

Si cnan e -io eI JdnUk , n 1, 2, .... N, (21)
n k-

. and the total phase dependence of the element weights is then

e ( cnan " "ane c ) , - n 1. 2, .... N . (22)

nk= 1

14



Assuming that the Lagrangian mu.tipliers (An of the constraint functions (D n of
Eq. (9) are all positive, the factor lanI/Ln in Eqs. (21) and (22) has no effecton
the phases. Hence. the phase perturbations are given by

On = phase Cninni - ed 7 n :1, 2.... N. (23)
SI/ k=1

and the total phases of the element weights by

4+9n= phs( K e jdnuk
n nan - k n 1, 2... ,N . (24)

For the special case that lani = cn 1 1. Eq. (24) reduces to the form of Eq. (9)
of Baird and Rassweller (see Appendix B).

The coefficients {.Yk} in Eqs. !23) and (24) are in general complex. However
in the important special case that (a) the unperturbed pattern is real. and hence
that the unperturbed element weights are conjugate symmetric,

aN-n+1. an I n = 12.... N:

and (b) the weighting coefficients {en| are chosen to be even symmetric,

cN-n+ = Cn. ,n : 1, 2,..., N

it has be en shown 2 3 that the phase perturbations are odd-symmetric: -

#N-n+l n In n= 1 2..., N . (25)

Since the (dn) In Eq. (23) are odd-aymmetric by Eq. (2), for Eq. (25) to hold it
is then necessary that the coefficients (-fkl be real.

Equation (23) does not provide an explicit solution for the phase perturbations
since the coefficients (.k'l are defined Irn terms of the unknow6 Lagrangian multi-
pliers {pkI. Nevertheless. the form of the phase perturbations is useful because
(a) it makes possible an interpretation of phase-only nulling in\terms of cancella-
tion beams; (b) it can serve as the basis of a numerical method for calculating the

23. Shore. R. A. (1983) A Proof of the Odd-Symmetry of the Pases for Minimu5

Weig•t Perturbation. Phase-5-ly Null Synthesis. RADC TR-83-96.
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phase perturbations for null synthesis with the number of unknowns equal to the

number of imposed nulls, K, rather than the number of elements in the array. N;

2nd (c) it can be incorporated into adaptive algorithms for phase-only nulling.

The application of Eq. (23) to null synthesis is the central concern of this report

and is treated in Section 3. The use of Eq. (23) in adaptive nulling is briefly

discussed in Section 4. A beam space interpretz±ion of phase-only nulling has

been given by Baird and Rassweiler, and also in Reference 13. For completene-s.

however, we give it briefly here as well, in a slightly more general form.

Assume that the coefficients {Tk are real and that the unperturbed phases.

are of the form

an = "dnus I n = 1, 2, N

so that the main beam of the unperturbed pattern is directed towards u = us We

rewrite Eq. (23) as

n= phase cnian " k k eI k
k=1

E 'Yk sin (d n(uk - ts))

tan- I k:lK k, n = 2, .... N, (26)
C nla nI "• k cos[d n(Uk - Us)]

kzI

and assume that the phase perturbations are small so that #n can be approxlmate%

by

K

E "Yk sin (dn(uk - us))

n k K n =12...., N . (27)

cnlanl I E "YR cos [dn(Uk - us)j

k=1

and the weight perturbations,

awn a n (ej'n-i) , n= 1, 2,... N

16
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approximated by

law n is Ja n on

j e -Jn's K sn(
ednsE 'Yk sn [nUk -us))

k=1
K

Cn -. la 1 :y cos [dn(uk - us)]

" k- 28

K~

Cn "~ lalf coB (dn(Uk - Usll

The cancellation pattr rn

N j~Ap(u) = E AWn e-dnu

n =1

is then approximated by

•an k=l n--

Kpu N Aw elu ( uB u ) jdnunk

/E n

n=1 n1

"iswhere
K, N i ( u j u )

K

c • n f k cos (dn(uk -us)j (30)

and so is the sum of K pairs of beams, one' member of 'ach pair directed towards
an imposed null location, u = Uk. and the other member, of opposite sign, directed

towards the symmetric location with respect to the direction of the unperturbed
main beam,

17



U =uk +2u, =uk - 2 (uk US)

The shape of the cancellation beams Is determined by the (cx}. For c = 1,

n = 1, 2, ... N, and the magnitude of the beam coefficients small compared

with the a the beams are of the form sin (.-)/sin (--); that is, beams

corresponding to an array of N elements with uniform amplitude. For other

choices of the (cn) the cancellation beams correspond to arrays with tapered

amplitude distributions. Further details may be found in References 13 and 15.

Although the interpretation of the phase-only nulling cancellation pattern as

a sum of beam pairs is based, as we have seen, on the assumption of small phase

perturbations, we shall for convenience in this report refer In general to Eqs. (23)

and (26) as "beam space" representations of phase-only weight perturbations, and

to the '?kI as "beam coefficients." It should be kept in mind, however, that strictly

speaking the beam space interpretation applies only to phase perturbations small

enough for the approximations, Eqs. (27) and (28), to be acceptable, say

6ni < 0. 5 (rad). It should also be noted that the beam space representation,
(29), of the cancellation pattern is In general a nonlinear superposition of

beams because the beam coefficients, {•k'. enter into the expression, Eq. (30),

for the fcl). Only if the beam coefficients are negligibly small compared to the

{cnlanl) does the representation. (29), become a linear superposition of

beams.

3& NUMERICAL CALCULATION OF PHASE-ONLY WEIGHT
PERTURBATIONS FOR NULL SYNTHESIS

The beam space representation, (26). obtained in the previous section for
the phase perturbations for minimized weight perturbation null synthesis, can be

used as the basis of a highly efficient method for numerically calculating the phase

perturbations. To calculate the beam coefficients, (_'k) in (26) we use com-

puter algorithms that have been developed for solving the so-called nonlinear

programming problem -- the problem of minimizing or maximizing a nonlinear

function of several variables subject to a set of nonlinear equality and/or inequality

constraints. Here, the nonlinear function we wish to minimize is given by Eq. (7),

which we rewrite in the form

18
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N

F =2 C.nlan. 2(1 - cos n)
n=1

N

4~ N 12 sin2  On~t (31)
n=1

and the nonlinear equality constraints are, from Eq. (3) a,.d the odd-symmetry of

the fdnI and the (On

N
E,, a cos + dnUk -us)j 0 0 k = 1, 2. ,... K (32)

n=1

In Reference 18 we investigated the solution of this r.nn' inear programming

problem when the JIn are the unknowns. The performance on this problem of

the two nonlinear programming algorithms LPNLP 2 4 and VMCON 2 5 was compared.

Here we assume the form of (26) for the phase perturbations with the K beam
coefficients I as the unknown variables. In applications to null synthesis with

large arrays and the number of imposed nulls. K, small relative to the number of
independent phases, N/2, this ipproach has the obvious met-it of reducing the

number of degrees of freedom from N/2 to K. Since many nonlinear programming

algorithms. including LPNLP and VMCON. require explicit expressions for the

"derivatives of the objective function and of the constraint functions with respect to
the unknowns (some algorithms compute these derivatives via discrete difference

approximations), we give expressions for the derivatives of F and the (E.k) with
respect to the t .Yk| in Appendix A.

To investigate the relative performance of the two approaches, beam space
and "phase space," to calculate the phase-only weight perturbations, the beam
coefficient method was used to calculate the phases for the same null synthesis

problems as were used in the study debcribed in Reference 18. The first problem

was that of imposing nulls in the pattern of a 41-element array with uniform am-
plitude and half-wavelength interelement spacing. The amplitudes of the elements

24. Pierre. D.A., and Lowe. M.J. (1975) Mathematical Programming Via
Augmented Lagrangians, Addison-Wesley. Mass.

25. Crane, R. L. et al (1980) Solution of the General Nonlinear Programming
Problems With Subroutine VMCON, Report ANL-80-64, Argonne National
Laboratory, Argonne, I11.

"19
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and the weighting coefficients (on) were set equal to unity, and the direction of

the unperturbed main beam, us, was taken to be zero (that is, broadside to the

array). A series of sets of imposed null locations was used starting with one null

at 4.00. then two nulls at 4.00 and 4.60. up through five nulls at 4.00. 4. 60. 5.20.

5.80. and 6. 40. Both LPNLP and VMCON were run in double precision.ron a

CDC 6600 compute.-. In running LPNLP the modified Davidon-Fletcher-Powell

(DFP) conjugate gradient mode (ISS = 0) was used without automatic reset to the

f gradient direction (IRESET = 0). The convergence parameters were set at

1.0 X 1"10 2 = F 3 -1.0 X 10"8. In running VMCON, the tolerance was

set at 1. 0)X 10-10. Both programs were run with the unknown beam coefficients

set initially to zero.

In Table 1 we compare null d&pths and computation times obtained for this

A /"test problem with LPNLP and VMCON for beam-space and phase-space nulling.

7 The phase-space nulling results are taken directly from Reference 18. The most

striking result is the remarkable improvement in computation time obtained with

beam-space nulling as compared with phase-space nulling. This improvement is

especially impressive when VMCON was used as the nonlinear programming

algoriihm; for the one-, two-, and three-null cases, computation time decreased

by a factor of more than 50, while for the four-null case the computation time was

reduced by a factor of 15. Smaller yet considerable decreases in computation

time were obtained when LPNLP was used as the algorithm. Null depths obtained

with the two methods are comparable. When convergence to a solution occurred,

the beam space method always gave the same phases as the phase apace method

to within very small difference*. The five-null case could not be solved when the

beam space method was used.

"I To help understand the failure of the beam space method In the five-null case,
"in Table 2 we have tabulated the beam coefficients and the average absolute phase

perturbation as a function of the number of imposed nulls. The beam coefficients

are tabulated in Increasing order of the imposed null locations towards which the

respective cancellation beams are directed. The average of the magnitudes of

the beam coefficients increases by a factor of more than 70 and the average

absolute phase perturbation doubles from the one-null to the four-null case.. As

discussed in Reference 18, this test problem was intentionally chosen to be a

difficult one, requiring nulls to be imposed at closely-spaced locations In a near-in

sidelobe region of a uniform array. Viewed Intuitively In terms of a picture of

cancellation beams, the magnitudes of the beam coefficients increase strongly

with the number of nulls in such a nulling situation because the main lobes of the

cancellation beams interfere with each other, thus requiring extensive mutual

adjustment of the magnitudes of the beams for nulling to occur. This Interference

is especially evidenced by the four-null case in Table 2 in which not only are
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Table 2. Values of the Beam Coefficients and the Average Abso-
lute Phase Perturbation for Beam Space Phase-Only Nulling in
the Pattern of a 41-Element Uniform Amplitude Array With X/2
SpaSing. Nullos imposed at the series of locations 4.0°, 4.6
5.2 . and 5.8 using LPNLP and VMCON

Average Absolute
Number of Beam Phase Perturbation

Nulls Coefficients (rad)

1 -0.4 0.28

2 -0.9 0.31
+0.5

3 +1.8 0.33
-4.3
+2.6

4 +15.6 0.54
-42.9
+42.0
-14.9

the magnitudes of the beams all much larger than that required to impose a single

null at the respectiv', locations, but in which the beam coefficients alternate in

sign despite the fact that the original pattern is negative at the locations 4. 0°. 4.60.
and 5. 20, and is positive only at 5.80. The increase in the magnitude of the beam

coefficients with the number of closely- ipaced nulls is clearly associated with an
Increase in numerical difficulty as shown by the increase In computation time,

especially pronounced in going from the three- to the four-null case. The numer-

ical difficulty can be attributed in part to the fact that increasingly large changes
4 in the beam coefficients are required to bring about small charges in the objective

and constraint functions. However, even when the phases are taken to be the

unknowns, the five-null cases in this series of imposed nulls presents formidable.
difficulty as can be seen in Table 1 from the fact that only LPNLP converged
to a solution and required an inordinately large amount of computation time.

Further work is needed to develop methods for handling such difficult phase-only

nulling situations.
The second test problem used to compare the beam-space and phase-space

"nulling methods was that of imposing nulls in the same pattern of an array with

41 elements, half-wavelength sp3cing, and uniform amplitude, at the series of

If a single null is imposed at each of the locations 4.0 ° 4.60. 5.2o, and 5.80.
the value of the beam coefficient is respectively -0.41, -0.31. -0.14, and +0.07.

22

\ -



sets of locations 250; 250 and 350; and so on up through a set of five imposed nulls

at 250. 350, 450, 55°, and 650. This test problem, in contrast to the first problem,

was chosen to be relatively easy, requiring nulls to be imposed at wide-spaced

locations in the lower sidelobe region of the pattern. In Tables 3 and 4 we have

tabulated the same quantities for this test problem as iit Tables 1 and 2, respec-

tively. Again the phase space results are taken directly from Reference 18. As

was noted for Table 1. the salient feature of Table 3 is the remarkable reduction

in computation time made possible by employing the beam-space nulling method.

especially when VMCON is ased as the nonlinear programming algorithm. Even

the five-null cdse was solved by VMCON using the beam space method in about

half the shortest time required to solve the one-null case when the phase space

method was used. Examining the beam coefficients in Table 4. it is seen that

there is relatively little change in their values as nulls are added; the coefficient

as3ociated with the 25 beam varies betweeai 0. 067 and 0.065, the beam coefficient

associated %Ith the 350 beam varies between -0.039 and -0. 040, and so on. Again

viewed intuitively In terms of a picture of cancellation beams, in this test exam-

ple the beams are coupled only through their sidelobes instead of through their

main beams as in the first test problem. Hence, the cancellaticn beams are

much more independent of each other and the beam coefficients for the multiple

Imposed null cases are very close to the values they have when only a stngle null

is imposed at each of the respective locations (+0. 067, -0. 042. +0. 055. +0. 029,

Sand +0. 046 for a single imposed null at 250. 350, 450, 550, and 650. respectively).

Because of the relative independence of the cancellation beams, little mutual

adjustment of the beams is required for nulling and the numerical difficulty of the

problem increases only slightly as additional nulls are imposed.

It may be of interest to note that the values of the beam coefficients for the

second test problem can be estimated rather clobely from a simplified form of

the approximation, (29), for the cancellation pattern. In this example the

Sweighting coefficients 'cnI and the amplitudes of the element weights (Ian are

equal to unity, the unperturbed main beam direction. u, equals zero. and N, the

number of array -lements, is 41. Assuming that the []-Yk1 | are small relative

to one, we can approximate the jcI in Eq. (30) by cn = 1. At the imposed null
nlocations u = Uk. k = 1, 2. K, the cancellation pattern, Ap(u), can then i1,e

approximated by

-p(u -k , k 1, 2..., K

if we neglect the contributions to the cancellation pattern at u - uk of the beams

directed towards the other imposed null locations and towards the locations
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Table 4. Values of the Beam Coefficients and the Average Abso-
lute Phase Perturbation for Beam Space Phase-Only Nullingin
the Pattern ot a 41-Element Uniform Amplitude Array With X/2
Spacing. N8 ils imposed at the series ot locations 25 . 3 5a, 45o
55 , and i5 using I.PNIP and VMCON

Average Absolute
Number of Beam Phase Perturbation

Nulls Coefficients (rad)

1 +0.067 0.044

2 +0.064 0.044
-0.039

3 +0.066 0.053
-0. 040
+0.054

4 +0.065 0.054
-0. 040
+0.052
+0.018

5 +0.065 0.063
-0.039
+0.052
+0.020
+0.046

symmetric with respect to the main beam of the imposed null locations. Since by

definition the cancellation pattern equals the negative of the value of the unper-

turbed pattern at the imposed null locations,

Ap(uk) p-Po(Uk) ( k 1. 2, .. , K o (33)

it follows that

"Vk 2po(uk) . k = 1. 2 .... K * (34)

Since the value of the unperturbed pattern at the locations 250 350 450, 550, and

65° Is 1. 41. -0.88, 1. 12. 0. 63, and 0. 98, respectively, we obtain from the ap-

proximation, (34). as estimates of the beam coefficients 0. 069. -0.043, 0.054.

0.031, and 0.048. These values are quite close to the calculated values given in

Table 4. More accural- esti-nates can be obtained from the approximation,

(29), by replacing the (cX) by cn as above but not neglecting the contributions
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of any of the cancellation beams. Equation (33) then yields a system of K simul-

taneous linear equations that can be solved for the beam coefficients.

4. ADAPTIVE PHASE-ONLY NULUNG

The application to adaptive phase-only nulling of the beam space representa-
tion of the phase perturbations has been discussed in detail by Baird and

Rassweiler, I and we will here touch only briefly on this topic.
In the previous section we showed that computation efficiency for minimized

weight perturbation, phase-only null synthesis In purely real patterns could be
significantly increased by using a beam space representation of the phase per-
turbations. thereby reducing the number of unknowns from N/2 (N the number of

elements) to K, the number of imposed nulls. The beam coefficients were deter-
mined using nonlinear programming algorithms supplied with values of the

objective function, the constraint functions, and their derivatives with respect to
the beam cc-efficients. In adaptive nulling with realistic arrays, the pattern can no

longer be assumed real and, consequently, the beam coefficients ITki in the beam

space representation, Eq. (23), must be regarded as complex constants.
Equation (23) can be usid to reduce the number of unknowns from N to 2K pro-
vided that the directions (uk0 of the sources of interference are known with
sufficient accuracy.

In adaptive nulling it is also often: the case that the only information available
to the adaptive algorithm (other than that of the directions of signal and jammers)
is that of the total output power of the array. The beam coefficients must then be
determined by random search or gradient methods that attempt to reduce the
total output power to a minimum. One danger of such algorithms is that the de-
sired signal will be nulled out in the course of reducing the total output power.

Constrained gradient methods such as that developed by Frosi2 6 are not helpful
in phase-only adaptive nulling since they require adjustments of the c-lement

amplitudes as well as the phases. One distinct advantage of using the beam space
repr'*sentation for phase-only adaptive nulling, as comparedwith adapting with
the phases themselves as the control variables, is that in certain situations (inter-
ference sources spaced not too closely in a low sidelobe region of an antenna
pattern) the beam coefficients are small in magnitude and the cancellation pattern
then consists of beams with complex coefficients directed at the interference
sources and at the locations symmetric with respect to the main beam. These
cancellation beams can have only a small effect on the main beam and so the

26. Frost, 0. L. (1971) An algorithm for linearly constrained adaptive array
processing, Proc. IEEE 60:661-675.
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response of the antenna to the desired signal is not likely to be significantly de-

graded as a result of the adaptive adjustment of the phases. The choice of the

weighting coeffic'ents (c n I in Eq. (23) can be used to con~trol the shape of the

cancellation beams. If c~ n I for all elements. the cancellation beams are of the

form sin (Nu i)sin (.Y.) corresponding to a uniform amplitude array. Other

choices of the fc nI can be used to obtain cancellation beams with broader main

beams and lower sidelobes. These may be desirable in certain applications.

Further details may be found In Reference 13. For closely-spaced jammers the

beam space method is likely to present considerable difficulties in adaptive null-

ing because the beam coefficients are then large, and Instabilities can easily arise

from the kind of phenomena noted in the previous section in regard to the first test

problem.

&. CONCLUSIONS

In this report we have described a new computational method for minimized

weight perturbation, phase-only null synthesis in linear array antenna patterns.

consisting of the use or nonlinear programming computer algorithms to calculate
the coefficients of a beam space representation or the optimal phase perturbations.

The beam space representation enables the number of unknowns to be reduced From

half the number of array elements to the number of imposed null locations.* The

derivatives of the objective and null constraint functions with respect to the beam

coefficients, utilized by the nonlinear programming algorithms, are calculated

from analytic expressions. Computation time Is significantly reduced in general

by this method, compared with that required to calculate the phase perturbations

directly with nonlinear programming techniques.
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Appendix A

Calculation of the Derivatives of the Objectivi Function and

Constraint Functions With Respect to Beam Coefficients

In this appendix we obtain expressions fcr the derivatives with respect to the

beam coefficients {-k of the objective function F given by Eq. (31) and the con-
straint functions (Ek0 given by Eq. (32).

From Eq. (31)

__LF- = 4 - en1a l 2  2sin cos
n 2 '2' 2 J 2 l,•p n=1 P

2 c in 12 sin n p 1, 2. K (Al)n~p

n=l

and from Eq. (32)

N
aEk aEk anFap aon a-Yp

n=1
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N a.
-- IanI sin[In+d-(Uk+ us)]8# , p: I, 2 .... K . (A2)

n=1 p

To calculate 8 from Eq. (26), we let

K

f k sin [dn(uk - us))
Yn k=1 lW= Kl *(A3)

C nIanI " yk cos Idn(Uk us)]

k=1

/

so that

"n tan Yn (A4)

/ .• t /and

Yn tan #n (A5)'

I ,Then,

a# d# y (A6.p On dn p~

From Eqs. (A4) and (AS)

2= cos 0n (A7)
Yn -+-•yn I+tan On

and from Eq. (A3)

aY n -sind(U - u) + . cos (dn(up Us)] (A8)
pF- n np s -T n

tn
p n
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where

K

V. a., na - y cos ldn(uk -Us)

kzl

and

K
• ',/tn =• E fk ai'n (dnluk -us)|

k=1

Substituting Eqs. (A4) and (A0) in Eq. (A6M we obtain

On!L COS2 0 MsnId (u - u )I + t 2- cos (d(u~ u W
17 Tp j sn p s n p sA)

The derivatives of the objective function and constraint functions are then given,

respectively, by Eqs. (AU) and (A2) with - obtained from Eq. (A9).
l v~p
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Appendix B

Comparison of the Minimized Weight Perturbation Objective
Function With the Objective Function Used by Baird

and Rasawa•ir

As noted in the introduction. Baird and lassweilerB1 treat the problem of

minimizing, by phase-only control, the mean square error between a desired sig-

nal and the array output, given discrete sinusoidal sources of signal and interfer-

ences. In the special case that the interferences are infinite in power, the mean

square error can be minimized only by placing pattern nulls in the direction of the

interference. The mean square difference between desired signal and array out-

put is then simply I p(us) - p 0 (us)12. where p0 (Us) and p(u.) are the values of the

original and perturbed pattern, respectively, at u = us, the direction of the desired

signal. For the main beam of the original pattern to be directed towards u = us,

the unperturbed weights are of the form an = IanI e~ jdnus and

P~u p ( )12 jonejdnu. N aejd nu 12

Ip(uS -po(u) 2 = 2 an a n
n=l n=1

- a [IanI (e3 n1)] 12 (B 1E)

n=1

B1. Baird, C.A., and Rassweiler, G.G. (1976) Adaptive sidelobe nulling using
digitally controlled phase-shifters, IEEE Trans. Antennas Propag.
AP-24:638-649.
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where the Ion) are the phase perturbations. This objective function differs in

general from the minimized weight perturbation objective function we employ

[Eq. (4)],

N 12io 2
F - cnian 2 e

n=1

N

--2 a cnlan12 (1 cos n) . (B2)
n=l

even when cn = I an 1, n = 1, .... N, the case treated by Baird and Rassweiler.

Only if the additional restriction of the phase perturbations to be odd-symmetric

is made do the two objective functions become equivalent, since then

(e in- 
(Cos n~ 1)]2

(F).

Even though the limiting form. for ir~finite power interferences, of the objec-
tive function employed by Baird and Rassweller, Eq. (BI), differs from the
mirimized weight perturbation objective function. Eq. (M2). the two objective

functions lead to the same form of beam space representation for the phase per-
turbations when cn = Ianj = 1, as we have noted in Section 2 regarding Eq. (24).

To understand why this is so. we briefly trace through the derivation of Eq. (24).
using Eq. (El) as the objective function. Starting with Eq. (10). the equation re-

quiring the Lagrangian to have a zero gradient, it is seen that if the objective
function, Eq. (El), is used instead of F, 311 terms on the right-hand side of

Eq. (10) remain the same except for VwF, which is replaced by VwG, where
mw

GA N rJ l4 On 2

n=1
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N N

= ~ laml IaI(w* 1 )(w, 1)
m~l n~l

using Eq. (5). To calculate VG we let

where

T

wi tha

Then

N7 G = 17I
w w

=2 Pw'

2 P (w-1).

using the formula for the complex gradient of a Hermitian quadratic form as in

obtaining Eq. (14). Equation (17) is then replaced by

w (P + R+A) (Pl1)
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The recursive matrix inversion procedure used to obtain Eq. (20) now gives

=k=1

where the (Vkl are given by Eq. (13) and the ()are scalar coefficients. Since

It follows that

where

Hence, just as Eq. (23) is obtained from Eq. (20), the phase perturbations are
given by

#n= phase. (anI - e idnus IanI K'1 e-du

k=l

aphase I e jdu, K Jnuk) n= 1. 2... N.

k= 1

and the total phases of the element weights by

ndns=phase (e -Jnus Kt e nk) n 1. 2. N.(1,3N
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Note that the amplitudes of the weights do not appear explicitly in these expres-

sions for the phase perturbations and total phases as they do in Eqs. (23),and (24).

The values of the coefficients {-y" ) do, however, depend on the weight amplitudes.

Comparing Eq. (B3) with Eq. (24), equating vn with -d u -t is seen that forn n s' .
cn = anI = 1, the two solul, ns are identical in form. Thus, the minimized Sig-

nal perturbation objective function, Eq. (B1), and the minimized weight perturba-

tion objective function, Eq. (B2), lead to the same form of representation for the

phase perturbations when cn I anI
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